TFGENZOO.flows.utils.conv module¶
-
class
TFGENZOO.flows.utils.conv.
Conv2D
(width: int = None, width_scale: int = 1, kernel_size: Tuple[int, int] = (3, 3), stride: Tuple[int, int] = (1, 1), padding: str = 'SAME', do_actnorm: bool = True, do_weightnorm: bool = False, initializer: tensorflow.python.ops.init_ops_v2.Initializer = <tensorflow.python.ops.init_ops_v2.RandomNormal object>, bias_initializer: tensorflow.python.ops.init_ops_v2.Initializer = 'zeros')[source]¶ Bases:
tensorflow.python.keras.engine.base_layer.Layer
Convolution layer for NHWC image
Sources:
Note
this layer applies
data-dependent normalization (actnorm, openai’s Glow)
weight normalization for stable training
this layer not implemented.
function add_edge_padding
ref. https://github.com/openai/glow/blob/master/tfops.py#L203-L232
-
build
(input_shape: tensorflow.python.framework.tensor_shape.TensorShape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
call
(x: tensorflow.python.framework.ops.Tensor)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.