TFGENZOO.flows.utils.actnorm_activation module¶
- 
class TFGENZOO.flows.utils.actnorm_activation.ActnormActivation(scale: float = 1.0, logscale_factor=3.0, **kwargs)[source]¶
- Bases: - tensorflow.python.keras.engine.base_layer.Layer- Actnorm Layer without inverse function - This layer cannot sync mean / variance via Multi GPU - Sources: - 
scale¶
- scaling - Type
- float 
 
 - 
logscale_factor¶
- logscale_factor - Type
- float 
 
 - Note - initialize
- mean = mean(first_batch)var = variance(first-batch)logs = log(scale / sqrt(var)) / log-scale-factorbias = -mean
 
- forward formula (forward only)
- logs = logs * log_scale_factorscale = exp(logs)z = (x + bias) * scale
 
 - 
build(input_shape: tensorflow.python.framework.tensor_shape.TensorShape)[source]¶
- Creates the variables of the layer (optional, for subclass implementers). - This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. - This is typically used to create the weights of Layer subclasses. - Parameters
- input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input). 
 
 - 
call(x: tensorflow.python.framework.ops.Tensor)[source]¶
- This is where the layer’s logic lives. - Parameters
- inputs – Input tensor, or list/tuple of input tensors. 
- **kwargs – Additional keyword arguments. 
 
- Returns
- A tensor or list/tuple of tensors. 
 
 - 
get_config()[source]¶
- Returns the config of the layer. - A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. - The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above). - Returns
- Python dictionary. 
 
 
-