TFGENZOO.flows.flatten module¶
-
class
TFGENZOO.flows.flatten.
Flatten
(**kwargs)[source]¶ Bases:
TFGENZOO.flows.flowbase.FlowComponent
Flatten Layer Sources:
Examples
>>> import tenosorflow as tf >>> from TFGENZOO.flows import Flatten >>> fl = Flatten() >>> fl.build([None, 16, 16, 2]) >>> fl(inputs) (<tf.Tensor 'flatten_2_2/Identity:0' shape=(None, 512) dtype=float32>, <tf.Tensor 'flatten_2_2/Identity_1:0' shape=(None,) dtype=float32>) >>> tf.keras.Model(inputs, fl(inputs)).summary() Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 16, 16, 2)] 0 _________________________________________________________________ flatten_2 (Flatten) ((None, 512), (None,)) 1 ================================================================= Total params: 1 Trainable params: 0 Non-trainable params: 1 _________________________________________________________________ >>> z, ldj = fl(tf.random.normal([1024, 16, 16, 2])) >>> x, ildj = fl(z, invere=True) >>> x.shape TensorShape([1024, 16, 16, 2])
-
build
(input_shape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-