TFGENZOO.flows.factor_out module¶
-
class
TFGENZOO.flows.factor_out.
FactorOut
(with_zaux: bool = False, conditional: bool = False, dims: int = 4)[source]¶ Bases:
TFGENZOO.flows.flowbase.FactorOutBase
Basic Factor Out Layer
This layer drops factor-outed Tensor z_i
Note
- forward procedure
- input : h_{i-1}output : h_{i}, loss[z_i, h_i] = split(h_{i-1})loss =z_i sim N(0, 1) if conditional is Falsez_i sim N(mu, sigma) if conditional is True,wheremu, sigma = Conv(h)
- inverse procedure
- input : h_{i}output : h_{i-1}sample z_i from N(0, 1) or N(mu, sigma) by conditionalh_{i-1} = [z_i, h_i]
-
build
(input_shape: tensorflow.python.framework.tensor_shape.TensorShape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
calc_ll
(z1: tensorflow.python.framework.ops.Tensor, z2: tensorflow.python.framework.ops.Tensor)[source]¶
-
forward
(x: tensorflow.python.framework.ops.Tensor, zaux: tensorflow.python.framework.ops.Tensor = None, **kwargs)[source]¶
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-
class
TFGENZOO.flows.factor_out.
FactorOut2DWithMask
(with_zaux: bool = False, conditional: bool = False, **kwargs)[source]¶ Bases:
TFGENZOO.flows.factor_out.FactorOutWithMask
-
calc_ll
(z1: tensorflow.python.framework.ops.Tensor, z2: tensorflow.python.framework.ops.Tensor, mask_tensor: tensorflow.python.framework.ops.Tensor = None)[source]¶ Calculate log likelihood. :param z1: [B, T, C // 2] :type z1: tf.Tensor :param z2: [B, T, C // 2] :type z2: tf.Tensor
-
forward
(x: tensorflow.python.framework.ops.Tensor, zaux: tensorflow.python.framework.ops.Tensor = None, mask=None, **kwargs)[source]¶
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-
-
class
TFGENZOO.flows.factor_out.
FactorOutWithMask
(with_zaux: bool = False, conditional: bool = False, dims: int = 4)[source]¶ Bases:
TFGENZOO.flows.factor_out.FactorOut
Basic Factor Out Layer With Mask
This layer drops factor-outed Tensor z_i
Note
- forward procedure
- input : h_{i-1}output : h_{i}, loss[z_i, h_i] = split(h_{i-1})loss =z_i sim N(0, 1) if conditional is Falsez_i sim N(mu, sigma) if conditional is True,wheremu, sigma = Conv(h)
- inverse procedure
- input : h_{i}output : h_{i-1}sample z_i from N(0, 1) or N(mu, sigma) by conditionalh_{i-1} = [z_i, h_i]
- mask notes
- mask shape is [B, T, M] where M may be 1reference glow-tts
-
calc_ll
(z1: tensorflow.python.framework.ops.Tensor, z2: tensorflow.python.framework.ops.Tensor, mask_tensor: tensorflow.python.framework.ops.Tensor = None)[source]¶ - Parameters
z1 (tf.Tensor) – [B, T, C // 2]
z2 (tf.Tensor) – [B, T, C // 2]