TFGENZOO.flows.utils.util module

TFGENZOO.flows.utils.util.bits_x(log_likelihood: tensorflow.python.framework.ops.Tensor, log_det_jacobian: tensorflow.python.framework.ops.Tensor, pixels: int, n_bits: int = 8)[source]

bits/dims

Sources:

Parameters
  • log_likelihood (tf.Tensor) – shape is [batch_size,]

  • log_det_jacobian (tf.Tensor) – shape is [batch_size,]

  • pixels (int) – e.g. HWC image => H * W * C

  • n_bits (int) – e.g [0 255] image => 8 = log(256)

Returns

shape is [batch_size,]

Return type

bits_x

Note

formula

\[bits\_x = - \cfrac{(log\_likelihood + log\_det\_jacobian)} {pixels \log{2}} + n\_bits\]
TFGENZOO.flows.utils.util.split_feature(x: tensorflow.python.framework.ops.Tensor, type: str = 'split')[source]

type = [split, cross]

TODO: implement Haar downsampling