TFGENZOO.flows.utils.conv_zeros module¶
-
class
TFGENZOO.flows.utils.conv_zeros.
Conv1DZeros
(width: int = None, width_scale: int = 2, kernel_size: int = 3, stride: int = 1, padding: str = 'SAME', logscale_factor: float = 3.0, initializer: tensorflow.python.ops.init_ops_v2.Initializer = 'zeros')[source]¶ Bases:
tensorflow.python.keras.engine.base_layer.Layer
Convolution layer for NTC text/audio with zero initialization
Sources:
Note
this layer not implemented. * function add_edge_padding
Xavier Initialize is better than other initializer
Examples
>>> import tensorflow as tf >>> from TFGENZOO.flows.utils.conv_zeros import Conv1DZeros >>> c1z = Conv1DZeros(width_scale = 2) >>> x = tf.keras.layers.Input([None, 32]) # [B, T, C] where T is time-step and C is hidden-depth >>> y = clz(y) # [B, T, C * 2]
-
build
(input_shape: tensorflow.python.framework.tensor_shape.TensorShape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
call
(x: tensorflow.python.framework.ops.Tensor)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-
-
class
TFGENZOO.flows.utils.conv_zeros.
Conv2DZeros
(width: int = None, width_scale: int = 1, kernel_size: Tuple[int, int] = 3, 3, stride: Tuple[int, int] = 1, 1, padding: str = 'SAME', logscale_factor: float = 3.0, initializer: tensorflow.python.ops.init_ops_v2.Initializer = 'zeros')[source]¶ Bases:
tensorflow.python.keras.engine.base_layer.Layer
Convolution layer for NHWC image with zero initialization Sources:
Note
this layer not implemented. * function add_edge_padding
Xavier Initialize is better than other initializer
-
build
(input_shape: tensorflow.python.framework.tensor_shape.TensorShape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
call
(x: tensorflow.python.framework.ops.Tensor)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-