TFGENZOO.flows.squeeze module¶
-
class
TFGENZOO.flows.squeeze.
Squeeze
(with_zaux=False)[source]¶ Bases:
TFGENZOO.flows.flowbase.FlowBase
Squeeze Layer
Sources:
Note
- forward formula
- z = reshape(x, [B, H // 2, W // 2, C * 4])
- inverse formula
- x = reshape(z, [B, H, W, C])
checkerboard spacing
e.g.
[[[[1], [2], [5], [6]],[[3], [4], [7], [8]],[[9], [10], [13], [14]],[[11], [12], [15], [16]]]]to
[[[ 1, 5],[ 9, 13]]][[[ 2, 6],[10, 14]]][[[ 3, 7],[11, 15]]][[[ 4, 8],[12, 16]]]
-
forward
(x: tensorflow.python.framework.ops.Tensor, zaux: tensorflow.python.framework.ops.Tensor = None, **kwargs)[source]¶
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-
class
TFGENZOO.flows.squeeze.
Squeeze2DWithMask
(with_zaux: bool = False, n_squeeze: int = 2)[source]¶ Bases:
TFGENZOO.flows.flowbase.FlowBase
-
build
(input_shape)[source]¶ Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.
This is typically used to create the weights of Layer subclasses.
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
-
forward
(x: tensorflow.python.framework.ops.Tensor, zaux: tensorflow.python.framework.ops.Tensor = None, mask: tensorflow.python.framework.ops.Tensor = None, **kwargs)[source]¶ - Parameters
x (tf.Tensor) – input tensor [B, T, C]
zaux (tf.Tensor) – pre-latent tensor [B, T, C’’]
mask (tf.Tensor) – mask tensor [B, T, M] where M may be 1
- Returns
reshaped input tensor [B, T // n_squeeze, C * 2] tf.Tensor: reshaped pre-latent tensor [B, T // n_squeeze, C’’ * n_squeeze] tf.Tensor: reshaped mask tensor [B, T // 2]
- Return type
tf.Tensor
-
get_config
()[source]¶ Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
- Returns
Python dictionary.
-
inverse
(z: tensorflow.python.framework.ops.Tensor, zaux: tensorflow.python.framework.ops.Tensor = None, mask: tensorflow.python.framework.ops.Tensor = None, **kwargs)[source]¶ - Parameters
z (tf.Tensor) – input tensor [B, T // n_squeeze, C * n_squeeze]
zaux (tf.Tensor) – pre-latent tensor [B, T // n_squeeze, C’’ * n_squeeze]
mask (tf.Tensor) – pre-latent tensor [B, T // n_squeeze, 1]
- Returns
reshaped input tensor [B, T, C] tf.Tensor: reshaped pre-latent tensor [B, T, C’’] tf.Tensor: mask tensor [B, T, 1]
- Return type
tf.Tensor
-